

www.corshamtech.com 617 Stokes Road, Suite 4-299 Medford, NJ 08055

KIM-1 60K RAM/ROM Board

Introduction

Thank you for buying our 60K RAM/ROM board for the KIM-1 computer! We hope this ends your "not quite enough memory" problem ☺

The board can fill in the missing 4K in the lower RAM region as well as provide RAM for the top 56K of the 6502's address space. RAM can be enabled for any/all of the following areas:

\$0400 - \$13FF \$2000 - \$FFFF

In addition, the block from \$E000 to \$FFFF can be configured as EPROM. The EPROM adds a lot of potential to a KIM system as it can contain an extended monitor, BASIC or other high level interpreter, a DOS, or the user's favorite demonstration programs.

There are actually a number of smaller blocks in those regions, so these are the individual blocks that can be enabled or disabled:

Start	End	Block Size
0400	07FF	1K
0800	0BFF	1K
0C00	0FFF	1K
1000	13FF	1K
2000	3FFF	8K
4000	5FFF	8K
6000	7FFF	8K
8000	9FFF	8K

A000	BFFF	8K
C000	DFFF	8K
E000	FFFF	8K

Block Enable Switches

SW1 is used to select which 8K blocks from \$2000 to \$FFFF are active, and for the block from \$E000 to \$FFFF it choses whether RAM or EPROM is selected. The lowest six switches select the blocks in 8K chunks: \$2000 to \$3FFF, \$4000 to \$5FFF, \$6000 to \$7FFF, \$8000 to \$9FFF, \$A000 to \$BFFF, and \$C000 to \$DFFF.

The top two switches select whether \$E000 to \$FFFF are RAM or EPROM. Enable only one of those two switches!

6502 Vectors

If you've selected to use EPROM in the top 8K, you have two options for the 6502's interrupt vectors. The interrupt vectors are at FFFA to FFFF, and normally our memory boards do not decode those addresses, resulting in the default KIM vectors in the KIM ROMs being selected.

Using switch SW2, labeled as VECTORS, selects whether to retrieve vectors from the KIM ROM by selecting KIM, or from the EPROM by selecting ROM.

You might be asking yourself why does the last block stop at FFF7 instead of FFFF? Because this board maps the three 6502 IRQ, NMI and RESET vectors back to the KIM-1's ROM, preserving normal operation of the KIM-1. There is a complete discussion of this in the KIM-1 User Manual, section 6.2 "Interrupt Vector Management."

Hooking It Up

Using a Corsham Technologies I/O Board – Easy

Included with your board is a 10 pin cable that plugs right into the I/O Board. Just connect it as shown in this picture of our KIM with both boards installed:

Wiring It Up Yourself – Not as Easy

The 60K RAM/ROM board plugs into the KIM-1's Expansion bus, which is the bus on the upper left. It is not the one where you have power connected. This is the easiest part of the installation.

This board needs a bit more setup than some of our previous products because there are more control lines needed to control the external decoding. On the Application connector (the lower one) are a number of pins that are needed for the 60K board to operate:

Pin	Name	I/0	Use
С	K1	0	Low when 0400-07FF selected
D	K2	0	Low when 0800-0BFF selected
Е	К3	0	Low when 0C00-0FFF selected
F	K4	0	Low when 1000-13FF selected
K	DECOD	I	When low, the lower 8K of address
	ENAB		space of the 6502 is selected.

The default set-up of a KIM-1 is to wire pin K to ground, which always enables the on-board RAM, ROM and peripherals, but this pin will be fed from a pin on the 60K board. If an address in the lower 8K is selected, the 60K RAM/ROM board will pull this low, otherwise it will be held high and the RAM board decodes the address.

The K1 to K4 lines are outputs from the KIM-1 when the address selected is in each of those blocks. These signals are normally not used on an unexpanded KIM-1, but the 60K board can use their state to fill in the RAM in the lower 8K bank.

The easiest way to connect this to your KIM-1 is via a 10 pin cable from a Corsham Technologies I/O Expander board, since that brings over all the important signals.

The board has a 10 pin connector which brings a few needed signals to/from the board. This is designed to plug into the 10 pin connector on our KIM-1 I/O Expander board, but that board is not required. Here are the pin numbers on the 10 pin connector and which pins on the KIM-1's Application connector they should be connected to:

10 Pin Header	Application Connector	Description
1	C, D, E, F	From KIM-1 K1-K4 lines to
		select 1K memory blocks in
		lower 8K block. Output from
		the KIM-1.
2	K	DECODE ENABLE from 60K

	Memory board, input to the KIM-1. Goes low when lowe 8K address is selected.
3-9	No connection
10	Ground

You can control which 8K blocks are assigned to RAM by use of the SW1 switches on the 60K Board. There are seven switches with hexadecimal page numbers next to them. To enable that block as RAM, slide the corresponding switch to the right (ON). If the switch is on the left, then that block will not be mapped to RAM. You can use other external PC boards to make use of those blocks not mapped to RAM.

Interrupt Vectors

As noted earlier, interrupt vectors can either be mapped back to the default vectors in the KIM-1 ROMs, or mapped to the top of the EPROM. The selection of where to get the vectors is controlled by SW2, labeled VECTORS and located between IC4 and IC6.

By setting SW2 to KIM, the system will use the vectors in the KIM ROMs. By selecting ROM, the vectors are taken from the EPROM in IC5.

If you are unsure how to set SW2, set it to KIM by default and your system will work as usual.

Secrets, or How to Get Another 60K

The RAM chip IC1 is 128K, but only the lower 64K are used on the board as-is. If that seems like a waste, you can modify the board to enable the upper 64K via bank selection. This isn't for the faint of heart, but here are some details.

First, you need to access the chip's A16 line, pin 2. Right now it's grounded to always select the lower 64K. By cutting the trace between ground and A16, and then bringing A16 to an unused I/O port you can select which bank by setting that I/O pin to 0 (lower 64K) or 1 (upper 64K). It would be a good idea to also pull this line high or low with a 1K or 2K resistor so it doesn't just float if the I/O pin isn't programmed.

If you implement this, keep in mind that the entire 60K is bank selected, so only the original RAM in the KIM-1 (0000 – 03FF) remains visible to both banks. You'll have

to write some bank select logic and place it into low RAM so it's visible to code in both banks.

Why didn't we do that? Because it adds yet another layer of confusion that people might not want to deal with, but it might be added in a future version, probably with a pull-up resistor to select bank 1 by default and then bring A16 to the 10 pin connector which can go back to the Application connector. Again, this might be added in a later version.

Greetings, Programs!

Hopefully you recognized this phrase from the movie TRON. Now that the KIM-1 can have a lot of RAM and EPROM, it seemed fitting to have the board greet all the new programs that can be added to it.

My KIM is calling me...

Bob Applegate February 2016

Revision History

Version	Changes
1	Initial version. Was missing pull-up resistor.
2	Added the missing pull-up R5.

Errata

None.

Parts List

Part	Number	Description
PCB	1	Printed Circuit Board (Corsham Tech)
P1	1	22/44 pin .156" edge connector
JP1	1	2x5 shrouded jumper block
R1-R5	5	2.2K ohm
C1-C4	4	.1uf disc capacitor, .1" lead spacing
SW1	1	8 position DIP switch
SW2	1	1 position DIP switch
IC1	1	628128 8x128K static RAM
IC2	1	74LS133
IC3	1	74LS145
IC4	1	74LS04
IC5	1	27C64 EPROM (optional)
	1	32 pin IC socket for IC1
	2	16 pin IC sockets for IC2 and IC3
	2	14 pin IC sockets for IC4 and IC6
	1	28 pin IC socket for IC5